MinION Nanopore Sequencing Enables Correlation between Resistome Phenotype and Genotype of Coliform Bacteria in Municipal Sewage
نویسندگان
چکیده
Wastewater treatment plants (WWTPs) functioned as the intersection between the human society and nature environment, are receiving increasingly more attention on risk assessment of the acquisition of environmental antibiotic resistance genes (ARGs) by pathogenetic populations during treatment. However, because of the general lack of robust resistome profiling methods, genotype, and resistance phenotype is still poorly correlated in human pathogens of sewage samples. Here we applied MinION sequencing to quantify the resistance genes of multiple antibiotic resistant (MAR) coliform bacteria, a common indicator for human enteric pathogens in sewage samples. Our pipeline could deliver the results within 30 h from sample collection and the resistome quantification was consistent to that based on the Illumina platform. Additionally, the long nanopore reads not only enabled a simultaneous identification of the carrier populations of ARGs detected, but also facilitated the genome reconstruction of a representative MAR strain, from which we identified an instance of chromosomal integration of environmental resistance gene obtained by plasmid exchange with a porcine pathogen. This study demonstrated the utilization of MinION sequencing in quick monitoring and simultaneous phylogenetic tracking of environmental ARGs to address potential health risk associated with them.
منابع مشابه
Forensic SNP Genotyping using Nanopore MinION Sequencing
One of the latest developments in next generation sequencing is the Oxford Nanopore Technologies' (ONT) MinION nanopore sequencer. We studied the applicability of this system to perform forensic genotyping of the forensic female DNA standard 9947 A using the 52 SNP-plex assay developed by the SNPforID consortium. All but one of the loci were correctly genotyped. Several SNP loci were identified...
متن کاملBacterial and viral identification and differentiation by amplicon sequencing on the MinION nanopore sequencer
BACKGROUND The MinION™ nanopore sequencer was recently released to a community of alpha-testers for evaluation using a variety of sequencing applications. Recent reports have tested the ability of the MinION™ to act as a whole genome sequencer and have demonstrated that nanopore sequencing has tremendous potential utility. However, the current nanopore technology still has limitations with resp...
متن کاملpoRe: an R package for the visualization and analysis of nanopore sequencing data
MOTIVATION The Oxford Nanopore MinION device represents a unique sequencing technology. As a mobile sequencing device powered by the USB port of a laptop, the MinION has huge potential applications. To enable these applications, the bioinformatics community will need to design and build a suite of tools specifically for MinION data. RESULTS Here we present poRe, a package for R that enables u...
متن کاملde novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer
BACKGROUND Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease o...
متن کاملPrevalence of the stx2 gene in coliform populations from aquatic environments.
Shiga toxin-producing Escherichia coli strains are human pathogens linked to hemorrhagic colitis and hemolytic uremic syndrome. The major virulence factors of these strains are Shiga toxins Stx1 and Stx2. The majority of the genes coding for these toxins are borne by bacteriophages. Free Stx2-encoding bacteriophages have been found in aquatic environments, but there is limited information about...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017